
SE 3310b

Theoretical Foundations of Software Engineering

Pushdown Automata and Pumping Lemma for
Context-free Languges

Aleksander Essex

1 / 1

Pushdown Automata

2 / 1

Introduction
Recall our language:

L = t0n1n : n ě 0u

Weused the pumping lemma to prove L is not regular. Then we
gave the context-free grammar that generates this language:

S Ñ 0S1 | ϵ

Recall grammars are like a recipe for generating a language. On the
other hand, automata are devices for recognizing a language. In this
lecture we’re going to look at a class of automata for recognizing
context-free languages, i.e., push-down automata.

3 / 1

Pushdown Automata

Consider an NFA reading input (i.e., aabb . . . in this example). It
starts at the left (i.e., at the a) andmoves to the right, one symbol at
a time:

NFA

a a b b . . .

4 / 1

Pushdown Automata
A pushdown automaton is essentially a non-deterministic finite
automaton with the added ability to read and write from a stack:

NFA

a a b b . . .0

x

...

z

Each time it reads an input symbol, it can also read the top of the
stack, and do a stack operation.

5 / 1

Pushdown Automaton
Definition

A pushdown automaton is a 6-tuple:

1. Q: Finite set of states
2. Σ: Input alphabet

3. Γ: Stack alphabet

4. δ : Q ˆ Σε ˆ Γε Ñ P(Q ˆ Γε): Transition function

5. q0 P Q: Start state
6. F Ď Q: Set of accept states

Definition 1 (Pushdown Automaton).

6 / 1

Pushdown Automaton
Notation

From the definition we see that a transition involves the current
state, the current input symbol, and the current stack symbol (on
the top of the stack), and yields a next state, and a next stack
symbol.

a, b Ñ c

which can be read as: ”reading a on input and b on top of the stack,
replace bwith c.”

7 / 1

Pushdown Automaton
Notation

§ a = ε: Wemake the transition without reading an input symbol
(like in an NFA)

§ b = ε: Wemake the transition without reading or popping from
the stack

§ c = ε: Wemake the transition without pushing anything to the
stack.

8 / 1

Pushdown Automaton: The
Stack
Using this notation, we can define a set of stack operations:

§ Push - x, ε Ñ y : If you read x on input, push y
§ Pop - x, y Ñ ε : If you read x on input and y on the stack, push ϵ.
§ Replace - x, y Ñ z : If you read x on input and y on the stack,
push z (i.e., replace ywith z)

§ Do nothing - x, ε Ñ ε : If you read x on input, do nothing to the
stack

Bottom of the stack: Technically the stack is a string and is
initialized as ε. Depending on application, youmay wish to push an
explicit ”bottom-of-the-stack” when the automaton starts.

9 / 1

PDA Example 1

Recall our language L = t0n1n : n ě 0u. Let’s draw a PDA that
recognizes this language. Here’s what we’ll need to do:

1. Mark the bottom of the stack so we’ll know if/when we
encounter it later

2. Start pushing all the 0’s onto the stack

3. As soon as you see a 1, start popping items off the stack: pop
one item for each 1 you see

4. If the stack becomes empty upon seeing the last 1, then you
saw equal 0’s and 1’s. Therefore accept.

10 / 1

PDA Example 1

Putting this together, we have:

q1start q2

q3q4

Mark bottom of stack

Start reading 1s: If 1 on input, pop 0 from stack

Is bottom of stack?
Read through 1s: If 1 on input, pop 0 from stack

Read through 0s: If 0 on input, push 0 to stack

11 / 1

PDA Example 1

Or, rewritten in our transition notation:

q1start q2

q3q4

ε, ε Ñ $

1, 0 Ñ ε

ε, $ Ñ ε
1, 0 Ñ ε

0, ε Ñ 0

12 / 1

Example 1: Sanity check

§ More 0s: If we havemore 0’s than 1’s, then there will still be
0’s on the stack when the computation stops, and thus we
won’t be able to transition to the accept state q4.

§ More 1s: If we havemore 1’s than 0’s, then as soon as we run
out of 0’s, we’ll see the $ symbol and transition to q4. However,
since 1’s are remaining in the input (and there are no defined
transitions out of q4) the computation ”poofs”/dies.

§ Out of order 0's and 1's: Same as before; as per the
transitions there is nowhere else for the computation to go, so
it also ”poofs”/dies.

13 / 1

Equivalence of PDAs and
CFGs

A language is context-free iff there exists somePDA that rec-
ognizes it.

Theorem 2.

To prove this, we follow the same strategy when we proved the
equivalence of DFAs andNFAs, i.e.,

§ Prove for every CFG generating languageL, there exists some
PDA recognizing L (see: Lemma 2.21 in Sipser)

§ Prove for every PDF recognizing L, there exists some CFG
generating L (see: Lemma 2.27 in Sipser)

14 / 1

Pumping Lemma for
Context-free Languages

15 / 1

NonContext-free Languages

Consider the language L = tanbn : n ě 0u. We’ve proven this
language non-regular using the pumping lemma for regular
languages, and the result of our study thus far as shownCFGs and
PDFs are capable of some form of ”counting.” But just howmany
things can a CFG/PDF keep track of?

16 / 1

NonContext-free Languages

Now consider another language: L1 = tanbncn : n ě 0u. Nowwe
need to keep track of three things.

Is there a CFG or PDF that can generate (resp. recognize)L1? It
seems like no. Recall our solution to L was to push all the a’s on to
the stack, and pop them off tomatch each of the b’s. But if we try to
do this for L1, when we’re done comparing a’s to b’s, we’re left with
an empty stack. So how can you compare c’s if there’s nothing left
in memory to compare to?

17 / 1

Parse Trees

LetL be a language, and let s P L be a string. IfL is context-free, there exists

some context-free grammar to generate s. We can derive s beginning with a
start-variable S, and substituting variables/terminals according to the grammar

until only terminals remain:

S

.

.

.

s :

18 / 1

Parse Trees

Recall in the pumping lemma for regular languages, if a string was
”long enough,” then by the pigeonhole principle it must revisit a
state within the automaton forming a loop.

Let’s extend this idea to the context-free grammar setting: if a
string is ”long enough” then by the pigeonhole principle it must
revisit a variable somewhere during the derivation.

19 / 1

Parse Trees: Example
Consider the following grammar:

S Ñ aTb
T Ñ aTb | ε

Suppose wewanted the generate the string aabb. Under the
following derivation:

S Ñ aTb Ñ aaTbb Ñ aaεbb Ñ aabb

the variableTwas repeated. That is,T is substituted for
something that led to anotherT. And, like in the pumping lemma
for regular languages, we can ”pump” this loop and the result
should still be in our language.

20 / 1

Parse Trees
This diagrams depicts a loop, i.e, a variableT that follows a derivation leading

back to aT. The resulting string s can segmented in to five parts: uvxyz. Notice
the outcome of theT . . .T loop is strictly contained in substrings v and y:

S

.

.

.

T

.

.

.

T

.

.

.

u v x y z

21 / 1

Pumping a Derivation
Ok so what happens if we substitute one of theTs with another
T . . .T derivation (i.e., pump once)?

S

.

.

.

T

.

.

.

T

.

.

.

u v x y z

22 / 1

Pumping a Derivation

If s = uvxyz , and v and y are the result of theT . . .T derivation,
then if we repeat (pump) theT . . .T segment, i.e., to something of
the form: T . . .T . . .T, then the v and y sections will be repeated:
s1 = uvvxyyz. If L is context-free, then s1 must be amember ofL. So
toomust s2 = uv . . . vxy . . . yz.

Similarly, we should be able to remove theT . . .T segment, and
hence the v and y substrings, and still have the result be part of the
language.

So if s = uvxyz P L, and L is context-free, then is must also be the
case that s1 = uvixyiz P L for i ě 0.

23 / 1

Pumping Lemma for
Context-free Languages

IfL is a context-free language, then for all strings s P Lwhere |s| ě p (the
pumping length), then s can be divited into five parts: s = uvxyzwhere:

1. uvixyiz P L for i ě 0

2. |vy| > 0 (i.e., vy is non-empty)
3. |vxy| ď p (i.e., vxy is no greater than the pumping length)

Definition 3 (Pumping Lemma for Context-free Languages).

24 / 1

Example 1: Counting 3
Things

Use the pumping lemma for context-free languages to prove the
following language is non context-free:

L = tanbncn : n ě 0u

25 / 1

Example 2: String Copy

Use the pumping lemma for context-free languages to prove the
following language is non context-free:

L = tww : w P t0, 1u˚u

26 / 1

Languages Classes

We’ve looked at both counting and string-copy languages. Here’s a
table showing the capabilities/limitations of each language class:

Language Class Counting Languages String-copy Languages
Regular Can’t count unbounded Can’t copy unbounded

Context-free Two things: anbn Can’t copy forwards (can dowwR)
Context-sensitive Up to four things: anbncndn Single copy: ww

Recursively enumerable Unrestricted: anbn . . . Unrestricted: ww . . . w

27 / 1

